
Simulink® Coder™

Getting Started Guide

R2016b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Coder™ Getting Started Guide
© COPYRIGHT 2011–2016 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

April 2011 Online only New for Version 8.0 (Release 2011a)
September 2011 Online only Revised for Version 8.1 (Release 2011b)
March 2012 Online only Revised for Version 8.2 (Release 2012a)
September 2012 Online only Revised for Version 8.3 (Release 2012b)
March 2013 Online only Revised for Version 8.4 (Release 2013a)
September 2013 Online only Revised for Version 8.5 (Release 2013b)
March 2014 Online only Revised for Version 8.6 (Release 2014a)
October 2014 Online only Revised for Version 8.7 (Release 2014b)
March 2015 Online only Revised for Version 8.8 (Release 2015a)
September 2015 Online only Revised for Version 8.9 (Release 2015b)
October 2015 Online only Rereleased for Version 8.8.1 (Release

2015aSP1)
March 2016 Online only Revised for Version 8.10 (Release 2016a)
September 2016 Online only Revised for Version 8.11 (Release 2016b)

Check Bug Reports for Issues and Fixes

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks
reports critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

http://www.mathworks.com/support/bugreports/

Contents

Product Overview
1

Simulink Coder Product Description 1-2
Key Features . 1-2

Code Generation Technology . 1-3

Validation and Verification for System Development 1-4
V-Model for System Development . 1-4
Types of Simulation and Prototyping in the V-Model 1-6
Types of In-the-Loop Testing in the V-Model 1-7
Mapping of Code Generation Goals to the V-Model 1-8

Target Environments and Applications 1-25
About Target Environments . 1-25
Types of Target Environments Supported By Simulink

Coder . 1-25
Applications of Supported Target Environments 1-27

Code Generation Workflow with Simulink Coder 1-30

Getting Started Examples
2

Generate C Code for a Model . 2-2
Configure Model for Code Generation 2-2
Check Model Configuration for Execution Efficiency 2-4
Simulate the Model . 2-5
Generate Code . 2-6
View the Generated Code . 2-7

vii

Build and Run Executable . 2-10
Configure Model to Output Data to MAT-File 2-10
Build Executable . 2-12
Run Executable . 2-13
View Results . 2-13

Tune Parameters and Monitor Signals During Execution . 2-16
Configure Data Accessibility . 2-16
Build Standalone Executable . 2-18
Run Executable . 2-18
Connect Simulink to Executable . 2-18
Tune Parameter . 2-19
More Information . 2-20

viii Contents

1

Product Overview

• “Simulink Coder Product Description” on page 1-2
• “Code Generation Technology” on page 1-3
• “Validation and Verification for System Development” on page 1-4
• “Target Environments and Applications” on page 1-25
• “Code Generation Workflow with Simulink Coder” on page 1-30

1 Product Overview

Simulink Coder Product Description
Generate C and C++ code from Simulink and Stateflow models

Simulink® Coder™ (formerly Real-Time Workshop®) generates and executes C and
C++ from Simulink diagrams, Stateflow® charts, and MATLAB® functions. The
generated source code can be used for real-time and non-real-time applications, including
simulation acceleration, rapid prototyping, and hardware-in-the-loop testing. You can
tune and monitor the generated code using Simulink or run and interact with the code
outside MATLAB and Simulink.

Key Features

• ANSI/ISO C and C++ code and executables for discrete, continuous, or hybrid
Simulink and Stateflow models

• Incremental code generation for large models
• Integer, floating-point, and fixed-point data type support
• Code generation for single-rate, multirate, and asynchronous models
• Single-task, multitask, and multicore code execution with or without an RTOS
• External mode simulation for parameter tuning and signal monitoring

1-2

 Code Generation Technology

Code Generation Technology

MathWorks® code generation technology produces C or C++ code and executables for
algorithms. You can write algorithms programmatically with MATLAB or graphically in
the Simulink environment. You can generate code for MATLAB functions and Simulink
blocks that are useful for real-time or embedded applications. The generated source code
and executables for floating-point algorithms match the functional behavior of MATLAB
code execution and Simulink simulations to a high degree of fidelity. Using the Fixed-
Point Designer product, you can generate fixed-point code that provides a bit-wise match
to model simulation results. Such broad support and high degree of accuracy are possible
because code generation is tightly integrated with the MATLAB and Simulink execution
and simulation engines. The built-in accelerated simulation modes in Simulink use code
generation technology.

Code generation technology and related products provide tooling that you can apply
to the V-model for system development. The V-model is a representation of system
development that highlights verification and validation steps in the development process.
For more information, see “Validation and Verification for System Development” on page
1-4.

To learn model design patterns that include Simulink blocks, Stateflow charts, and
MATLAB functions, and map to commonly used C constructs, see “Modeling Patterns for
C Code” (Embedded Coder®).

1-3

http://www.mathworks.com/products/simfixed/
http://www.mathworks.com/products/simfixed/

1 Product Overview

Validation and Verification for System Development

An approach to validating and verifying system development is the V-model.

In this section...

“V-Model for System Development” on page 1-4
“Types of Simulation and Prototyping in the V-Model” on page 1-6
“Types of In-the-Loop Testing in the V-Model” on page 1-7
“Mapping of Code Generation Goals to the V-Model” on page 1-8

V-Model for System Development

The V-model is a representation of system development that highlights verification and
validation steps in the system development process. As the following figure shows, the
left side of the ‘V’ identifies steps that lead to code generation, including requirements
analysis, system specification, detailed software design, and coding. The right side of
the V focuses on the verification and validation of steps cited on the left side, including
software integration and system integration.

1-4

 Validation and Verification for System Development

System Specification

Coding

Software Detailed

Design

System Integration

and Calibration

 Hardware-in-the-loop

(HIL) testing

 Processor-in-the-loop

(PIL) testing

Simulation

Rapid simulation

System simulation (export)

Rapid prototyping

 Software-in-the-loop

(SIL) testing

On-target rapid prototyping

Production code generation

Model encryption (export)

Verification and validation

Software Integration

Depending on your application and its role in the process, you might focus on one or more
of the steps called out in the V-model or repeat steps at several stages of the V-model.
Code generation technology and related products provide tooling that you can apply to
the V-model for system development. For more information about how you can apply
MathWorks code generation technology and related products provide tooling to the V-
model process, see:

• “Types of Simulation and Prototyping in the V-Model” on page 1-6
• “Types of In-the-Loop Testing in the V-Model” on page 1-7
• “Mapping of Code Generation Goals to the V-Model” on page 1-8

1-5

1 Product Overview

Types of Simulation and Prototyping in the V-Model

The following table compares the types of simulation and prototyping identified on the
left side of the V-model diagram.

 Host-Based
Simulation

Standalone Rapid
Simulations

Rapid Prototyping On-Target Rapid
Prototyping

Purpose Test and validate
functionality of
concept model

Refine, test,
and validate
functionality of
concept model in
nonreal time

Test new ideas
and research

Refine and calibrate
designs during
development process

Execution
hardware

Host computer Host computer

Standalone
executable runs
outside of MATLAB
and Simulink
environments

PC or nontarget
hardware

Embedded
computing unit
(ECU) or near-
production hardware

Code
efficiency
and I/O
latency

Not applicable Not applicable Less emphasis on
code efficiency and
I/O latency

More emphasis on
code efficiency and I/
O latency

Ease of use
and cost

Can simulate
component
(algorithm or
controller) and
environment (or
plant)

Normal mode
simulation in
Simulink enables
you to access,
display, and
tune data during
verification

Easy to simulate
models of hybrid
dynamic systems
that include
components and
environment models

Ideal for batch
or Monte Carlo
simulations

Can repeat
simulations with
varying data sets,
interactively or
programmatically

Might require
custom real-time
simulators and
hardware

Might be done
with inexpensive
off-the-shelf PC
hardware and I/O
cards

Might use existing
hardware, thus less
expensive and more
convenient

1-6

 Validation and Verification for System Development

 Host-Based
Simulation

Standalone Rapid
Simulations

Rapid Prototyping On-Target Rapid
Prototyping

Can accelerate
Simulink
simulations with
Accelerated and
Rapid Accelerated
modes

with scripts, without
rebuilding the model

Can connect to
Simulink to monitor
signals and tune
parameters

Types of In-the-Loop Testing in the V-Model

The following table compares the types of in-the-loop testing for verification and
validation identified on the right side of the V-model diagram.

 SIL Testing PIL Testing on
Embedded Hardware

PIL Testing on
Instruction Set
Simulator

HIL Testing

Purpose Verify component
source code

Verify component
object code

Verify component
object code

Verify system
functionality

Fidelity and
accuracy

Two options:

Same source
code as target,
but might have
numerical
differences

Changes source
code to emulate
word sizes, but is
bit accurate for
fixed-point math

Same object code

Bit accurate for
fixed-point math

Cycle accurate
because code runs on
hardware

Same object code

Bit accurate for
fixed-point math

Might not be cycle
accurate

Same executable
code

Bit accurate for
fixed-point math

Cycle accurate

Use real and
emulated system I/O

Execution
platforms

Host Target Host Target

Ease of use
and cost

Desktop
convenience

Executes on desk or
test bench

Desktop
convenience

Executes on test
bench or in lab

1-7

1 Product Overview

 SIL Testing PIL Testing on
Embedded Hardware

PIL Testing on
Instruction Set
Simulator

HIL Testing

Executes only in
Simulink

Reduced hardware
cost

Uses hardware —
process board and
cables

Executes only on
host computer
with Simulink
and integrated
development
environment (IDE)

Reduced hardware
cost

Uses hardware —
processor, embedded
computer unit
(ECU), I/O devices,
and cables

Real-time
capability

Not real time Not real time
(between samples)

Not real time
(between samples)

Hard real time

Mapping of Code Generation Goals to the V-Model

The following tables list goals that you might have, as you apply code generation
technology, and where to find guidance on how to meet those goals. Each table focuses on
goals that pertain to a step of the V-model for system development.

• Documenting and Validating Requirements
• Developing a Model Executable Specification
• Developing a Detailed Software Design
• Generating the Application Code
• Integrating and Verifying Software
• Integrating, Verifying, and Calibrating System Components

Documenting and Validating Requirements

Goals Related Product Information Examples

Capture requirements in
a document, spreadsheet,
data base, or requirements
management tool

“Simulink Report Generator”

Third-party vendor tools such as
Microsoft® Word, Microsoft Excel®,
raw HTML, or IBM® Rational®

DOORS®

1-8

 Validation and Verification for System Development

Goals Related Product Information Examples

Associate requirements
documents with objects in
concept models

Generate a report on
requirements associated with a
model

“Requirements Traceability”
(Simulink Verification and
Validation™)

Bidirectional tracing in Microsoft
Word, Microsoft Excel, HTML, and
IBM Rational DOORS

slvnvdemo_fuelsys_docreq

Include requirements links in
generated code

“Review of Requirements Links”
(Simulink Verification and
Validation)

rtwdemo_requirements

Trace model blocks and
subsystems to generated code
and vice versa

“Code Tracing” (Embedded Coder) rtwdemo_hyperlinks

Verify, refine, and test concept
model in non real time on a
host system

“Model Architecture and Design”
(Simulink Coder)

“Model Architecture and Design”
(Embedded Coder)

“Simulation” (Simulink)

“Acceleration” (Simulink)

“Air-Fuel Ratio Control
System with Stateflow
Charts”

Run standalone rapid
simulations

Run batch or Monte-Carlo
simulations

Repeat simulations with
varying data sets, interactively
or programmatically with
scripts, without rebuilding the
model

Tune parameters and monitor
signals interactively

“Accelerate, Refine, and Test
Hybrid Dynamic System on Host
Computer by Using RSim System
Target File”

“Set Up and Use Host/Target
Communication Channel”

“Run Rapid Simulations Over
Range of Parameter Values”

“Run Batch Simulations
Without Recompiling
Generated Code”

“Use MAT-Files to Feed Data
to Inport Blocks for Rapid
Simulations”

1-9

1 Product Overview

Goals Related Product Information Examples

Simulate models for hybrid
dynamic systems that
include components and an
environment or plant that
requires variable-step solvers
and zero-crossing detection
Distribute simulation runs
across multiple computers

“Simulink Test”

“MATLAB Distributed Computing
Server”

“Parallel Computing Toolbox”

1-10

 Validation and Verification for System Development

Developing a Model Executable Specification

Goals Related Product Information Examples

Produce design artifacts for
algorithms that you develop in
MATLAB code for reviews and
archiving

“MATLAB Report Generator”

Produce design artifacts from
Simulink and Stateflow models
for reviews and archiving

“System Design Description”
(Simulink Report Generator™)

rtwdemo_codegenrpt

Add one or more components
to another environment for
system simulation

Refine a component model

Refine an integrated system
model

Verify functionality of a model
in nonreal time

Test a concept model

“Deploy Algorithm Model for
Real-Time Rapid Prototyping”

Schedule generated code “Absolute and Elapsed Time
Computation”

“Time-Based Scheduling and
Code Generation”

“Asynchronous Events”

rtwdemos, select Multirate
Support

Specify function boundaries of
systems

“Subsystems” rtwdemo_atomic

rtwdemo_ssreuse

rtwdemo_filepart

rtwdemo_exporting_functions

Specify components and
boundaries for design and
incremental code generation

“Component-Based Modeling”
(Simulink Coder)

“Component-Based Modeling”
(Embedded Coder)

rtwdemo_mdlreftop

1-11

1 Product Overview

Goals Related Product Information Examples

Specify function interfaces
so that external software can
compile, build, and invoke the
generated code

“Function and Class Interfaces”
(Simulink Coder)

“Function and Class Interfaces”
(Embedded Coder)

rtwdemo_fcnprotoctrl

rtwdemo_cppclass

Manage data packaging in
generated code for integrating
and packaging data

“File Packaging” (Simulink
Coder)

“File Packaging” (Embedded
Coder)

rtwdemo_ssreuse

rtwdemo_mdlreftop

rtwdemo_advsc

Generate and control the
format of comments and
identifiers in generated code

“Add Custom Comments to
Generated Code” (Embedded
Coder)

“Construction of Generated
Identifiers” (Embedded Coder)

rtwdemo_comments

rtwdemo_symbols

Create a zip file that contains
generated code files, static
files, and dependent data to
build generated code in an
environment other than your
host computer

“Relocate Code to Another
Development Environment”
(Simulink Coder)

rtwdemo_buildinfo

Export models for validation
in a system simulator using
shared libraries

“Package Generated Code
as Shared Object Libraries”
(Embedded Coder)

rtwdemo_shrlib

Refine component and
environment model designs
by rapidly iterating between
algorithm design and
prototyping

Verify whether a component
can adequately control a
physical system in non-real
time

“Deployment” (Simulink Coder)

“Deployment” (Embedded
Coder)

rtwdemo_profile

1-12

 Validation and Verification for System Development

Goals Related Product Information Examples

Evaluate system performance
before laying out hardware,
coding production software, or
committing to a fixed design

Test hardware
Generate code for rapid
prototyping

“Function and Class Interfaces”

“Entry-Point Functions and
Scheduling”

“Generate Modular Function
Code” (Embedded Coder)

rtwdemo_counter

rtwdemo_async

Generate code for rapid
prototyping in hard real time,
using PCs

“Simulink Real-Time” “Simulink Real-Time Examples”

Generate code for rapid
prototyping in soft real time,
using PCs

“Simulink Desktop Real-Time” sldrtex_vdp (and others)

Developing a Detailed Software Design

Goals Related Product Information Examples

Refine a model design for
representation and storage of
data in generated code

“Data Representation”
(Simulink Coder)

“Data Representation”
(Embedded Coder)

Select code generation features
for deployment

“Target Environment
Configuration” (Simulink
Coder)

“Target Environment
Configuration” (Embedded
Coder)

“Sharing Utility Code”
(Embedded Coder)

rtwdemo_counter

rtwdemo_async

“Sample Workflows” in the
Embedded Coder documentation

1-13

1 Product Overview

Goals Related Product Information Examples

“AUTOSAR Code Generation”
(Embedded Coder)

Specify target hardware
settings

“Target Environment
Configuration” (Simulink
Coder)

“Target Environment
Configuration” (Embedded
Coder)

rtwdemo_targetsettings

Design model variants “Define, Configure, and
Activate Variants” (Simulink)

“Variant Systems” (Embedded
Coder)

Specify fixed-point algorithms
in Simulink, Stateflow, and the
MATLAB language subset for
code generation

“Data Types and Scaling”
(Fixed-Point Designer)

“Fixed-Point Code Generation
Support” (Fixed-Point
Designer)

rtwdemo_fixpt1

“Air-Fuel Ratio Control System
with Fixed-Point Data”

Convert a floating-point model
or subsystem to a fixed-point
representation

“Conversion Using Simulation
Data” (Fixed-Point Designer)

“Conversion Using Range
Analysis” (Fixed-Point
Designer)

fxpdemo_fpa

Iterate to obtain an optimal
fixed-point design, using
autoscaling

“Data Types and Scaling”
(Fixed-Point Designer)

fxpdemo_feedback

Create or rename data types
specifically for your application

“What Are User-Defined Data
Types?” (Embedded Coder)

“Data Type Replacement”
(Embedded Coder)

rtwdemo_udt

Control the format of identifiers
in generated code

“Construction of Generated
Identifiers” (Embedded Coder)

rtwdemo_symbols

1-14

 Validation and Verification for System Development

Goals Related Product Information Examples

Specify how signals, tunable
parameters, block states, and
data objects are declared,
stored, and represented in
generated code

“Custom Storage Classes”
(Embedded Coder)

rtwdemo_cscpredef

Create a data dictionary for a
model

“Data Definition and
Declaration Management”
(Embedded Coder)

rtwdemo_advsc

Relocate data segments for
generated functions and data
using #pragmas for calibration
or data access

“Control Data and Function
Placement in Memory by
Inserting Pragmas” (Embedded
Coder)

rtwdemo_memsec

Assess and adjust model
configuration parameters based
on the application and an
expected run-time environment

“Configuration” (Simulink
Coder)

“Configuration” (Embedded
Coder)

“Generate Code Using
Simulink® Coder™”
“Generate Code Using
Embedded Coder®”

Check a model against basic
modeling guidelines

“Run Model Checks” (Simulink) rtwdemo_advisor1

Add custom checks to the
Simulink Model Advisor

“Customization and
Automation”

slvnvdemo_mdladv

Check a model against custom
standards or guidelines

“Run Model Checks” (Simulink)

Check a model against industry
standards and guidelines
(MathWorks Automotive
Advisory Board (MAAB), IEC
61508, IEC 62304, ISO 26262,
EN 50128 and DO-178)

“Standards, Guidelines, and
Block Usage” (Embedded
Coder)

“Model Guidelines Compliance”
(Simulink Verification and
Validation)

rtwdemo_iec61508

Obtain model coverage for
structural coverage analysis
such as MC/DC

“Model Coverage Analysis”
(Simulink Design Verifier™)

Prove properties and generate
test vectors for models

Simulink Design Verifier sldvdemo_cruise_control

1-15

1 Product Overview

Goals Related Product Information Examples

sldvdemo_cruise_control_-

verification

Generate reports of models and
software designs

“MATLAB Report Generator”
(MATLAB Report Generator)

“Simulink Report Generator”
(Simulink Report Generator)

“System Design Description”
(Simulink Report Generator)

rtwdemo_codegenrpt

Conduct reviews of your model
and software designs with
coworkers, customers, and
suppliers who do not have
Simulink available

“Model Web Views” (Simulink
Report Generator)

“Model Comparison” (Simulink
Report Generator)

slxml_sfcar

Refine the concept model of
your component or system

Test and validate the model
functionality in real time

Test the hardware

Obtain real-time profiles and
code metrics for analysis and
sizing based on your embedded
processor

Assess the feasibility of the
algorithm based on integration
with the environment or plant
hardware

“Deployment” (Simulink Coder)

“Deployment” (Embedded
Coder)

“Code Execution Profiling”
(Embedded Coder)

“Static Code Metrics”
(Embedded Coder)

rtwdemos, select Embedded
IDEs or Embedded Targets

Generate source code for your
models, integrate the code
into your production build
environment, and run it on
existing hardware

“Code Generation” (Simulink
Coder)

“Code Generation” (Embedded
Coder)

rtwdemo_counter

rtwdemo_fcnprotoctrl

rtwdemo_cppclass

rtwdemo_async

“Sample Workflows” in the
Embedded Coder documentation

1-16

 Validation and Verification for System Development

Goals Related Product Information Examples

Integrate existing externally
written C or C++ code with
your model for simulation and
code generation

“Block Creation” (Simulink)

“External Code Integration”
(Simulink Coder)

“External Code Integration”
(Embedded Coder)

rtwdemos, select Integrating
with C Code or Integrating
with C++ Code

Generate code for on-target
rapid prototyping on specific
embedded microprocessors and
IDEs

“Deploy Generated Embedded
System Software to Application
Target Platforms” (Embedded
Coder)

In rtwdemos, select one of the
following: Embedded IDEs or
Embedded Targets

Generating the Application Code

Goals Related Product Information Examples

Optimize generated ANSI®

C code for production (for
example, disable floating-
point code, remove termination
and error handling code, and
combine code entry points into
single functions)

“Performance” (Simulink
Coder)

“Performance” (Embedded
Coder)

rtwdemos, select
Optimizations

Optimize code for a specific
run-time environment, using
specialized function libraries

“Code Replacement” (Simulink
Coder)

“Code Replacement”
(Embedded Coder)

“Code Replacement
Customization” (Embedded
Coder)

“Optimize Generated Code
By Developing and Using
Code Replacement Libraries -
Simulink®”

Control the format and style of
generated code

“Control Code Style”
(Embedded Coder)

rtwdemo_parentheses

Control comments inserted into
generated code

“Add Custom Comments to
Generated Code” (Embedded
Coder)

rtwdemo_comments

1-17

1 Product Overview

Goals Related Product Information Examples

Enter special instructions
or tags for postprocessing by
third-party tools or processes

“Customize Post-Code-
Generation Build Processing”
(Simulink Coder)

rtwdemo_buildinfo

Include requirements links in
generated code

“Review of Requirements
Links” (Simulink Verification
and Validation)

rtwdemo_requirements

Trace model blocks and
subsystems to generated code
and vice versa

“Code Tracing” (Embedded
Coder)

“Standards, Guidelines, and
Block Usage” (Embedded
Coder)

rtwdemo_comments

rtwdemo_hyperlinks

Integrate existing externally
written code with code
generated for a model

“Block Creation” (Simulink)

“External Code Integration”
(Simulink Coder)

“External Code Integration”
(Embedded Coder)

rtwdemos, select Integrating
with C Code or Integrating
with C++ Code

Verify generated code for
MISRA C®a and other run-time
violations

“MISRA C Guidelines”
(Embedded Coder)

“Polyspace Bug Finder”

“Polyspace Code Prover”

Protect the intellectual
property of component model
design and generated code

Generate a binary file (shared
library)

“Protected Model” (Simulink)

“Package Generated Code
as Shared Object Libraries”
(Embedded Coder)

Generate a MEX-file S-function
for a model or subsystem so
that it can be shared with a
third-party vendor

“Automate S-Function
Generation with S-Function
Builder” (Simulink Coder)

1-18

 Validation and Verification for System Development

Goals Related Product Information Examples

Generate a shared library for
a model or subsystem so that
it can be shared with a third-
party vendor

“Package Generated Code
as Shared Object Libraries”
(Embedded Coder)

Test generated production code
with an environment or plant
model to verify a conversion of
the model to code

“Software-in-the-Loop
Simulation” (Embedded Coder)

“Test Generated Code with SIL
and PIL Simulations”

Create an S-function wrapper
for calling your generated
source code from a model
running in Simulink

“Write Wrapper S-Function and
TLC Files” (Simulink Coder)

Set up and run SIL tests on
your host computer

“Software-in-the-Loop
Simulation” (Embedded Coder)

“Test Generated Code with SIL
and PIL Simulations”

a. MISRA® and MISRA C are registered trademarks of MISRA Ltd., held on behalf of the MISRA Consortium.

Integrating and Verifying Software

Goals Related Product Information Examples

Integrate existing externally
written C or C++ code with a
model for simulation and code
generation

“Block Creation” (Simulink)

“External Code Integration”
(Simulink Coder)

“External Code Integration”
(Embedded Coder)

rtwdemos, select Integrating
with C Code or Integrating
with C++ Code

Connect to data interfaces
for generated C code data
structures

“Data Exchange Interfaces”
(Simulink Coder)

“Data Exchange Interfaces”
(Embedded Coder)

rtwdemo_capi

rtwdemo_asap2

Control the generation of code
interfaces so that external
software can compile, build,
and invoke the generated code

“Function and Class Interfaces”
(Embedded Coder)

rtwdemo_fcnprotoctrl

rtwdemo_cppclass

1-19

1 Product Overview

Goals Related Product Information Examples

Export virtual and function-call
subsystems

“Export Function-Call
Subsystems” (Embedded Coder)

rtwdemo_exporting_functions

Include target-specific code “Code Replacement” (Simulink
Coder)

“Code Replacement”
(Embedded Coder)

“Code Replacement
Customization” (Embedded
Coder)

“Optimize Generated Code
By Developing and Using
Code Replacement Libraries -
Simulink®”

Customize and control the build
process

“Build Process Customization”
(Simulink Coder)

rtwdemo_buildinfo

Create a zip file that contains
generated code files, static
files, and dependent data to
build the generated code in an
environment other than your
host computer

“Relocate Code to Another
Development Environment”
(Simulink Coder)

rtwdemo_buildinfo

Integrate software components
as a complete system for testing
in the target environment

“Target Environment
Verification” (Embedded Coder)

Generate source code for
integration with specific
production environments

“Code Generation” (Simulink
Coder)

“Code Generation” (Embedded
Coder)

rtwdemo_async

“Sample Workflows” in the
Embedded Coder documentation

Integrate code for a specific
run-time environment, using
specialized function libraries

“Code Replacement” (Simulink
Coder)

“Code Replacement”
(Embedded Coder)

“Code Replacement
Customization” (Embedded
Coder)

“Optimize Generated Code
By Developing and Using
Code Replacement Libraries -
Simulink®”

1-20

 Validation and Verification for System Development

Goals Related Product Information Examples

Enter special instructions
or tags for postprocessing by
third-party tools or processes

“Customize Post-Code-
Generation Build Processing”
(Simulink Coder)

rtwdemo_buildinfo

Integrate existing externally
written code with code
generated for a model

“Block Creation” (Simulink)

“External Code Integration”
(Simulink Coder)

“External Code Integration”
(Embedded Coder)

rtwdemos, select Integrating
with C Code or Integrating
with C++ Code

Connect to data interfaces
for the generated C code data
structures

“Data Exchange Interfaces”
(Simulink Coder)

“Data Exchange Interfaces”
(Embedded Coder)

rtwdemo_capi

rtwdemo_asap2

Schedule the generated code “Timers”

“Time-Based Scheduling”

“Event-Based Scheduling”

rtwdemos, select Multirate
Support

Verify object code files in a
target environment

“Software-in-the-Loop
Simulation” (Embedded Coder)

“Test Generated Code with SIL
and PIL Simulations”

Set up and run PIL tests on
your target system

“Processor-in-the-Loop
Simulation” (Embedded Coder)

“Test Generated Code with SIL
and PIL Simulations”

“Configure Processor-In-The-
Loop (PIL) for a Custom Target”

“Create a Target
Communication Channel for
Processor-In-The-Loop (PIL)
Simulation”

See the list of supported
hardware for the Embedded
Coder product on the
MathWorks Web site, and then

1-21

http://www.mathworks.com/hardware-support/index.html?q=%20product:%22Embedded+Coder%22
http://www.mathworks.com/hardware-support/index.html?q=%20product:%22Embedded+Coder%22

1 Product Overview

Goals Related Product Information Examples

find an example for the related
product of interest

1-22

 Validation and Verification for System Development

Integrating, Verifying, and Calibrating System Components

Goals Related Product Information Examples

Integrate the software and
its microprocessor with the
hardware environment for the
final embedded system product

Add the complexity of the
environment (or plant) under
control to the test platform

Test and verify the embedded
system or control unit by using
a real-time target environment

“Deploy Algorithm Model for
Real-Time Rapid Prototyping”

“Deploy Environment Model for
Real-Time Hardware-In-the-
Loop (HIL) Simulation”

“Deploy Generated Standalone
Executables To Target
Hardware” (Embedded Coder)

“Deploy Generated Embedded
System Software to Application
Target Platforms” (Embedded
Coder)

Generate source code for HIL
testing

“Code Generation” (Simulink
Coder)

“Code Generation” (Embedded
Coder)

“Deploy Environment Model for
Real-Time Hardware-In-the-
Loop (HIL) Simulation”

Conduct hard real-time HIL
testing using PCs

“Simulink Real-Time” “Simulink Real-Time Examples”

Tune ECU properly for its
intended use

“Data Exchange Interfaces”
(Simulink Coder)

“Data Exchange Interfaces”
(Embedded Coder)

rtwdemo_capi

rtwdemo_asap2

Generate ASAP2 data files “Export ASAP2 File for Data
Measurement and Calibration”

rtwdemo_asap2

1-23

1 Product Overview

Goals Related Product Information Examples

Generate C API data interface
files

“Exchange Data Between
Generated and External Code
Using C API”

rtwdemo_capi

1-24

 Target Environments and Applications

Target Environments and Applications

In this section...

“About Target Environments” on page 1-25
“Types of Target Environments Supported By Simulink Coder” on page 1-25
“Applications of Supported Target Environments” on page 1-27

About Target Environments

In addition to generating source code, the code generator produces make or project files to
build an executable for a specific target environment. The generated make or project files
are optional. If you prefer, you can build an executable for the generated source files by
using an existing target build environment, such as a third-party integrated development
environment (IDE). Applications of generated code range from calling a few exported C
or C++ functions on a host computer to generating a complete executable using a custom
build process, for custom hardware, in an environment completely separate from the host
computer running MATLAB and Simulink.

The code generator provides built-in system target files that generate, build, and execute
code for specific target environments. These system target files offer varying degrees
of support for interacting with the generated code to log data, tune parameters, and
experiment with or without Simulink as the external interface to your generated code.

Types of Target Environments Supported By Simulink Coder

Before you select a system target file, identify the target environment on which you
expect to execute your generated code. The most common target environments include
those environments listed in the following table.

Target Environment Description

Host computer The same computer that runs MATLAB and Simulink. Typically, a host
computer is a PC or UNIX®a environment that uses a non-real-time operating
system, such as Microsoft Windows® or Linux®b. Non-real-time (general
purpose) operating systems are nondeterministic. For example, those
operating systems might suspend code execution to run an operating system
service and then, after providing the service, continue code execution.
Therefore, the executable for your generated code might run faster or slower
than the sample rates that you specified in your model.

1-25

1 Product Overview

Target Environment Description

Real-time
simulator

A different computer than the host computer. A real-time simulator can be
a PC or UNIX environment that uses a real-time operating system (RTOS),
such as:

• Simulink Real-Time system
• A real-time Linux system
• A Versa Module Eurocard (VME) chassis with PowerPC® processors

running a commercial RTOS, such as VxWorks® from Wind River®

Systems

The generated code runs in real time and behaves deterministically. The
exact nature of execution varies based on the particular behavior of the
system hardware and RTOS.

Typically, a real-time simulator connects to a host computer for data logging,
interactive parameter tuning, and Monte Carlo batch execution studies.

Embedded
microprocessor

A computer that you eventually disconnect from a host computer and run as
a standalone computer as part of an electronics-based product. Embedded
microprocessors range in price and performance, from high-end digital signal
processors (DSPs) that process communication signals to inexpensive 8-bit
fixed-point microcontrollers in mass production (for example, electronic parts
produced in the millions of units). Embedded microprocessors can:

• Use a full-featured RTOS
• Be driven by basic interrupts
• Use rate monotonic scheduling provided with code generation

a. UNIX is a registered trademark of The Open Group in the United States and other countries.
b. Linux is a registered trademark of Linus Torvalds.

A target environment can:

• Have single- or multiple-core CPUs
• Be a standalone computer or communicate as part of a computer network

In addition, you can deploy different parts of a Simulink model on different target
environments. For example, it is common to separate the component (algorithm or
controller) portion of a model from the environment (or plant). Using Simulink to model

1-26

http://en.wikipedia.org/wiki/RTOS
http://www.mathworks.com/products/xpctarget/
http://en.wikipedia.org/wiki/Rate-monotonic_scheduling

 Target Environments and Applications

an entire system (plant and controller) is often referred to as closed-loop simulation and
can provide many benefits, such as early verification of components.

The following figure shows example target environments for code generated for a model.

C
o

d
e

g
e

n
e

ra
ti

o
n

Algorithm model

Host

executable

System model

Host computer(s)

Embedded

microprocessor

Real-time

simulator

Environment model

C
o

d
e

g
e

n
e

ra
ti

o
n

C
o

d
e

g
e

n
e

ra
ti

o
n

Applications of Supported Target Environments

The following table lists several ways that you can apply code generation technology in
the context of the different target environments.

Application Description

Host Computer
Accelerated simulation You apply techniques to speed up the execution of model

simulation in the context of the MATLAB and Simulink
environments. Accelerated simulations are especially
useful when run time is long compared to the time
associated with compilation and checking whether the
target is up to date.

Rapid simulation You execute code generated for a model in nonreal time on
the host computer, but outside the context of the MATLAB
and Simulink environments.

1-27

1 Product Overview

Application Description

System simulation You integrate components into a larger system. You
provide generated source code and related dependencies
for building a system in another environment or in a host-
based shared library to which other code can dynamically
link.

Model intellectual property protection You generate a Simulink shareable object library for a
model or subsystem for use by a third-party vendor in
another Simulink simulation environment.

Real-Time Simulator
Rapid prototyping You generate, deploy, and tune code on a real-time

simulator connected to the system hardware (for example,
physical plant or vehicle) being controlled. This design
step is crucial for validating whether a component can
control the physical system.

System simulation You integrate generated source code and dependencies
for components into a larger system that is built in
another environment. You can use shared library files for
intellectual property protection.

On-target rapid prototyping You generate code for a detailed design that you can run
in real time on an embedded microprocessor while tuning
parameters and monitoring real-time data. This design
step allows you to assess, interact with, and optimize code,
using embedded compilers and hardware.

Embedded Microprocessor
Production code generation From a model, you generate code that is optimized

for speed, memory usage, simplicity, and potentially,
compliance with industry standards and guidelines.

“Software-in-the-Loop Simulation” You execute generated code with your plant model
within Simulink to verify conversion of the model to code.
You might change the code to emulate target word size
behavior and verify numerical results expected when the
code runs on an embedded microprocessor. Or, you might
use actual target word sizes and just test production code
behavior.

1-28

 Target Environments and Applications

Application Description

“Processor-in-the-Loop Simulation” You test an object code component with a plant or
environment model in an open- or closed-loop simulation
to verify model-to-code conversion, cross-compilation, and
software integration.

Hardware-in-the-loop (HIL) testing You verify an embedded system or embedded computing
unit (ECU), using a real-time target environment.

1-29

1 Product Overview

Code Generation Workflow with Simulink Coder

You can use MathWorks code generation technology to generate standalone C or C++
source code for rapid prototyping, simulation acceleration, and hardware-in-the-loop
(HIL) simulation:

• By developing Simulink models and Stateflow charts, and then generating C/C++ code
from the models and charts with the Simulink Coder product

• By integrating MATLAB code for code generation in MATLAB Function blocks in a
Simulink model, and then generating C/C++ code with the Simulink Coder product

You can generate code for most Simulink blocks and many MathWorks products on page
1-3. The following figure shows the product workflow for code generation with Simulink
Coder. Other products that support code generation, such as Stateflow software, are
available.

Other
MATLAB code

Code generation
from MATLAB

MATLAB

MATLAB Function
block

Other
Simulink blocks

Simulink

Simulink
Coder

C or C++
code

Compiler or
IDE toolchain

Executable program
(runs in target environment)

The code generation workflow is a part of the V-model for system development. The
process includes code generation, code verification, and testing of the executable program
in real-time. For rapid prototyping of a real-time application, typical tasks are:

1-30

 Code Generation Workflow with Simulink Coder

• Configure the model for code generation in the model configuration set
• Check the model configuration for execution efficiency using the Code Generation

Advisor
• Generate and view the C code
• Create and run the executable of the generated code
• Verify the execution results
• Build the target executable
• Run the external model target program
• Connect Simulink to the external process for testing
• Use signal monitoring and parameter tuning to further test your program.

A typical workflow for applying the software to the application development process is:

1-31

1 Product Overview

For more information on how to perform these tasks, see the Getting Started with
Simulink Coder tutorials:

1 “Generate C Code for a Model” on page 2-2
2 “Build and Run Executable” on page 2-10
3 “Tune Parameters and Monitor Signals During Execution” on page 2-16

1-32

2

Getting Started Examples

• “Generate C Code for a Model” on page 2-2
• “Build and Run Executable” on page 2-10
• “Tune Parameters and Monitor Signals During Execution” on page 2-16

2 Getting Started Examples

Generate C Code for a Model

In this section...

“Configure Model for Code Generation” on page 2-2
“Check Model Configuration for Execution Efficiency” on page 2-4
“Simulate the Model” on page 2-5
“Generate Code” on page 2-6
“View the Generated Code” on page 2-7

Simulink Coder generates standalone C/C++ code for Simulink models for deployment
in a wide variety of applications. The Getting Started with Simulink Coder includes
three tutorials. It is recommended that you complete Generate C Code for a Model
first, and then the following tutorials: “Build and Run Executable” on page 2-10 and
“Tune Parameters and Monitor Signals During Execution” on page 2-16.

This example shows how to prepare the rtwdemo_secondOrderSystem
model for code generation and generate C code for real-time simulation. The
rtwdemo_secondOrderSystem model implements a second-order physical system called
an ideal mass-spring-damper system. Components of the system equation are listed as
mass, stiffness, and damping. To open the model, in the command window, type:

rtwdemo_secondOrderSystem

Configure Model for Code Generation

To prepare the model for generating C89/C90 compliant C code, you can specify
code generation settings in the Configuration Parameters dialog box. To open the
Configuration Parameters dialog box, in the Simulink Editor, click the Model
Configuration Parameters button.

Solver for Code Generation

To generate code for a model, you must configure a solver. Simulink Coder generates only
standalone code for a fixed-step solver. On the Solver pane, select a solver that meets

2-2

 Generate C Code for a Model

the performance criteria for real-time execution. For this model, observe the following
settings.

Code Generation Target

To specify a target configuration for the model, choose a system target file, a template
makefile, and a make command. You can use a ready-to-run Generic Real-Time Target
(GRT) configuration.

1 In the Configuration Parameters dialog box, select the Code Generation pane.
2 To open the System Target File Browser dialog box, click the System target file

parameter Browse button. The System Target File Browser dialog box includes a
list of available targets. This example uses the system target file grt.tlc Generic
Real-Time Target.

2-3

2 Getting Started Examples

3 Click OK.

Code Generation Report

You can specify that the code generation process automatically generates an HTML
report that includes the generated code and information about the model.

1 In the Configuration Parameters dialog box, select the Code Generation > Report
pane.

2 For this example, the following configuration parameters are selected:

• Create code generation report
• Open report automatically

After the code generation process is complete, an HTML code generation report appears
in a separate window.

Check Model Configuration for Execution Efficiency

When generating code for real-time deployment, a common objective for the generated
code is that it executes efficiently. You can run the Code Generation Advisor on your
model for a specified objective, such as Execution efficiency. The advisor provides
information on how to meet code generation objectives for your model.

1 In the Configuration Parameters dialog box, select the Code Generation pane.
2 From the Select objective drop-down list, select Execution efficiency. Click

Apply.
3 Click Check Model.
4 In the System Selector dialog box, click OK to run checks on the model.

After the advisor runs, there are two warnings indicated by a yellow triangle.
5 On the left pane, click Check model configuration settings against code

generation objectives.
6 On the right pane, click Modify Parameters. The configuration parameters that

caused the warning are changed to the software-recommended setting.
7 On the right pane, click Run This Check. The check now passes. The Code

Generation Advisor lists the parameters and their recommended settings for
Execution efficiency.

2-4

 Generate C Code for a Model

Close the Code Generation Advisor.

Ignore the warning for the Identify questionable blocks within the specified
system. This warning is for production code generation which is not the goal for this
example.

Simulate the Model

In the Simulink Editor, simulate the model to verify that the output is as you expect for
the specified solver settings.

1 To send logged data to the Simulation Data Inspector, on the Simulink Editor
toolbar, verify that Send Logged Workspace Data to Data Inspector is selected
from the Simulation Data Inspector button menu.

2 Simulate the model.
3 When the simulation is done, in the Simulink Editor, click the Simulation Data

Inspector button to open the Simulation Data Inspector.
4 Expand the run and then select the Outport block data check boxes to plot the data.

2-5

2 Getting Started Examples

Leave these results in the Simulation Data Inspector. Later, you can compare the
simulation data to the output data generated from the executable shown in “Build and
Run Executable” on page 2-10.

Generate Code

1 In the Configuration Parameters dialog box, on the Code Generation pane, select
the Generate code only check box.

2 Click Apply.
3 In the model window, press Ctrl+B.

After code generation, the HTML code generation report opens.

2-6

 Generate C Code for a Model

View the Generated Code

The code generation process places the source code files in the
rtwdemo_secondOrderSystem_grt_rtw folder. The HTML code generation report
is in the rtwdemo_secondOrderSystem_grt_rtw/html folder. The code generation
report includes:

• Subsystem Report
• Code Interface Report
• Generated code

Code Interface Report

In the left navigation pane, click Code Interface Report to open the report. The code
interface report provides information on how an external main program can interface
with the generated code. There are three entry point functions to initialize, step, and
terminate the real-time capable code.

2-7

2 Getting Started Examples

For rtwdemo_secondOrderSystem, the Outports section includes a single output
variable representing the Outport block of the model.

2-8

 Generate C Code for a Model

Generated Code

The generated model.c file rtwdemo_secondOrderSystem.c contains the algorithm
code, including the ODE solver code. The model data and entry point functions are
accessible to a caller by including rtwdemo_secondOrderSystem.h.

On the left navigation pane, click rtwdemo_secondOrderSystem.h to view the extern
declarations for block outputs, continuous states, model output, entry points, and timing
data:

The next example shows how to build an executable. See “Build and Run Executable” on
page 2-10.

2-9

2 Getting Started Examples

Build and Run Executable

In this section...

“Configure Model to Output Data to MAT-File” on page 2-10
“Build Executable” on page 2-12
“Run Executable” on page 2-13
“View Results” on page 2-13

Simulink Coder supports the following methods for building an executable:

• Using toolchain based controls.
• Using template makefile based controls.
• Interfacing with an IDE.

The code generation target that you select for your model determines the build process
controls that are presented to you. The example model uses the GRT code generation
target, which enables the toolchain based controls. This example shows how to build an
executable using the toolchain controls, and then test the executable results.

Before following this example, simulate the example model,
rtwdemo_secondOrderSystem, as described in “Generate C Code for a Model” on page
2-2. Later on, the simulation results are used to compare the results from running the
executable.

Configure Model to Output Data to MAT-File

Before building the executable, enable the model to log output to a MAT-file instead of
the base workspace. You can then view the output data by importing the MAT-file into
the Simulation Data Inspector.

1 In the Configuration Parameters dialog box, select the All Parameters tab and
search for MAT-file logging.

2 Select the MAT-file logging parameter check box.
3 The MAT-file variable name modifier parameter is specified as rt_.

2-10

 Build and Run Executable

4 On the Commonly Used Parameters tab, click the Data Import/Export pane
and specify the Save to workspace or file parameters, as shown here.

5 Click Apply.

2-11

2 Getting Started Examples

Build Executable

The internal MATLAB function make_rtw executes the code generation process for a
model. make_rtw performs an update diagram on the model, generates code, and builds
an executable.

To build an executable in the working MATLAB folder:

1 On the All Parameters tab, find the Toolchain parameter, which is set to
Automatically locate an installed toolchain.

2 To verify your toolchain, click the Validate button.

The Validation Report indicates if the checks passed.
3 On the All Parameters tab, select the MAT-file logging checkbox.
4 On the All Parameters tab, select the Support non-finite numbers checkbox.
5 On the Commonly Used Parameters tab, on the Code Generation pane, clear

the Generate code only check box.
6 Click Apply.
7 To build the executable, press Ctrl+B in the model diagram window.

The MATLAB command window displays the following output:
** starting the model **

** created rtwdemo_secondOrderSystem.mat **

The code generator places the executable in the working folder. On Windows the
executable is rtwdemo_secondOrderSystem.exe. On Linux the executable is
rtwdemo_secondOrderSystem.

2-12

 Build and Run Executable

Run Executable

In the MATLAB command window, run the executable. For Windows, type

!rtwdemo_secondOrderSystem

For Linux, type

!./rtwdemo_secondOrderSystem

The code generator outputs a MAT-file, rtwdemo_secondOrderSystem.mat. It saves
the file to the working folder.

View Results

This example shows you how to import data into the Simulation Data Inspector, and then
compare the executable results with the simulation results. If you have not already sent
logged data from the workspace to the simulation data to the Simulation Data Inspector,
follow the instructions in “Simulate the Model” on page 2-5.

1 If the Simulation Data Inspector is not already open, in the Simulink Editor, click
the Simulation Data Inspector button.

2 To open the Import dialog, from the Simulation Data Inspector toolstrip, click
Import on the Visualize tab.

3 In the Import dialog, for Import from, select the MAT-file option button.

Enter the rtwdemo_secondOrderSystem.mat file. The data populates the table.

2-13

2 Getting Started Examples

Click Import.
4 Click the Compare tab.
5 Select Run 1: rtwdemo_secondOrderSystem from the Baseline list and Run 2:

Imported_Data from the Compare To list.
6 Click Compare.

2-14

 Build and Run Executable

The output from the executed code is within a reasonable tolerance of the simulation
data output previously collected in “Generate C Code for a Model” on page 2-2.

The next example shows how to run the executable on your machine using Simulink as
an interface for testing. See “Tune Parameters and Monitor Signals During Execution”
on page 2-16.

2-15

2 Getting Started Examples

Tune Parameters and Monitor Signals During Execution

In this section...

“Configure Data Accessibility” on page 2-16
“Build Standalone Executable” on page 2-18
“Run Executable” on page 2-18
“Connect Simulink to Executable” on page 2-18
“Tune Parameter” on page 2-19
“More Information” on page 2-20

This example shows how to access parameter and signal data while a generated
executable runs. Use this approach to experiment with parameters and signal inputs
during rapid prototyping.

To interact with a generated program by using Simulink, simulate a model in external
mode. In this example, the program runs as a standalone executable in nonreal time on
your host computer. Simulink communicates with the executable by using a TCP/IP link.

To learn about the example model and how to generate code, see the tutorials “Generate
C Code for a Model” on page 2-2 and “Build and Run Executable” on page 2-10.

Configure Data Accessibility

To efficiently implement a model in C code, you typically do not allocate storage in
memory for every parameter, signal, and state in the model. As long as the model
algorithm does not require these data items to calculate outputs, code generation
optimizations can eliminate storage for the data. To instead allocate storage for the data
so you can access it during prototyping, disable the optimizations.

1 Open the example model.

rtwdemo_secondOrderSystem

2-16

 Tune Parameters and Monitor Signals During Execution

2 Set Configuration Parameters > Optimization > Signals and Parameters >
Default parameter behavior to Tunable.

2-17

2 Getting Started Examples

With this setting, by default, block parameters (such as the Gain parameter of a
Gain block) are tunable in the generated code.

3 Clear Configuration Parameters > All Parameters > Signal storage reuse.

With this setting, by default, the generated code allocates storage for signal lines.
The external mode simulation can access the values of these signals so that you can
monitor the signals, for example, by using a Scope block in the model.

Build Standalone Executable

Generate code and create an executable from the model.

1 Select Configuration Parameters > Code Generation > Interface > External
mode.

This option enables the generated executable to later communicate with Simulink.
2 Generate code from the model. For example, in the model, press Ctrl+B.

The generated executable, rtwdemo_secondOrderSystem, appears in your current
folder. A code generation report opens.

Run Executable

At the command prompt, run the generated executable. Use the option -tf to override
the stop time so that the executable runs indefinitely.

system('rtwdemo_secondOrderSystem -tf inf &')

Connect Simulink to Executable

To interact with the running process, use external mode simulation in Simulink.

1 In the model, set the Simulation mode drop-down list to External.

2
Click the Connect to Target button .

2-18

 Tune Parameters and Monitor Signals During Execution

3 In the model, double-click the Scope block. The scope displays the values of the
system output signals.

Tune Parameter

Experiment with the value of a block parameter during execution. Observe the impact of
the change.

1 In the model, select View > Property Inspector.
2 Click the Gain block named Damping: c/m.
3 In the Property Inspector, change the value of Gain from 400 to 800.

2-19

2 Getting Started Examples

The Scope block shows the effect of the change on the signal values.

More Information

For more information, the following table includes common capabilities and resources for
generating and executing C and C++ code for your model.

2-20

 Tune Parameters and Monitor Signals During Execution

To... See....

Configure data accessibility for rapid
prototyping

“Access Signal, State, and Parameter Data
During Execution”

Model multirate systems “Scheduling”
Create multiple model configuration sets
and share configuration parameter settings
across models

“Configuration Reuse”

Control how signals are stored and
represented in the generated code

“Signals”

Generate block parameter storage
declarations and interface block
parameters to your code

“Override Default Parameter Behavior by
Creating Global Variables in the Generated
Code”

Store data separate from the model “Data Objects”
Interface with legacy code for simulation
and code generation

“External Code Integration”

Generate separate files for subsystems and
model

“File Packaging”

Configure code comments and reserve
keywords

“Code Appearance”

Generate C++ compatible code “Programming Language”
Export an ASAP2 file containing
information about your model during the
code generation process

“Export ASAP2 File for Data Measurement
and Calibration”

Write host-based or target-based code that
interacts with signals, states, root-level
inputs/outputs, and parameters in your
target-based application code

“Exchange Data Between Generated and
External Code Using C API”

Create a protected model that hides all
block and line information to share with
third-party

“Model Protection”

Customize the build process “Build Process Customization”
Create a custom block “Block Authoring and Customization”
Create your own target “Target Development”

2-21

